Mangiferin Decreases Plasma Free Fatty Acids through Promoting Its Catabolism in Liver by Activation of AMPK
نویسندگان
چکیده
Mangiferin has been shown to have the effect of improving dyslipidemia. Plasma free fatty acids (FFA) are closely associated with blood lipid metabolism as well as many diseases including metabolic syndrome. This study is to investigate whether mangiferin has effects on FFA metabolism in hyperlipidemic rats. Wistar rats were fed a high-fat diet and administered mangiferin simultaneously for 6 weeks. Mangiferin (50, 100, 150 mg/kg BW) decreased dose-dependently FFA and triglycerides (TG) levels in plasma, and their accumulations in liver, but increased the β-hydroxybutyrate levels in both plasma and liver of hyperlipidemic rats. HepG2 cells were treated with oleic acid (OA, 0.2 mmol/L) to simulate the condition of high level of plasma FFA in vitro, and were treated with different concentrations of mangiferin simultaneously for 24 h. We found that mangiferin significantly increased FFA uptake, significantly decreased intracellular FFA and TG accumulations in HepG2 cells. Mangiferin significantly increased AMP-activated protein kinase (AMPK) phosphorylation and its downstream proteins involved in fatty acid translocase (CD36) and carnitine palmitoyltransferase 1 (CPT1), but significantly decreased acyl-CoA: diacylgycerol acyltransferase 2 (DGAT2) expression and acetyl-CoA carboxylase (ACC) activity by increasing its phosphorylation level in both in vivo and in vitro studies. Furthermore, these effects were reversed by Compound C, an AMPK inhibitor in HepG2 cells. For upstream of AMPK, mangiferin increased AMP/ATP ratio, but had no effect on LKB1 phosphorylation. In conclusion, mangiferin decreased plasma FFA levels through promoting FFA uptake and oxidation, inhibiting FFA and TG accumulations by regulating the key enzymes expression in liver through AMPK pathway. Therefore, mangiferin is a possible beneficial natural compound for metabolic syndrome by improving FFA metabolism.
منابع مشابه
Effects of Ramadan fasting on plasma free fatty acids in patients with non-alcoholic fatty liver disease
Introduction: Nonalcoholic fatty liver disease (NAFLD) is a global disease which its prevalence is about 10-35%. Several factors are involved in the pathogenesis of the disease. The present study was conducted to evaluate the effect of fasting during Ramadan on plasma free fatty acids in patients with NAFLD.Methods: This cross-sectional study was performed during the month of Ramadan in June-Ju...
متن کاملMangiferin Improves Hepatic Lipid Metabolism Mainly Through Its Metabolite-Norathyriol by Modulating SIRT-1/AMPK/SREBP-1c Signaling
Objective: Mangiferin (MGF) is a natural xanthone, with regulation effect on lipid metabolism. However, the molecular mechanism remains unclear. We purposed after oral administration, MGF is converted to its active metabolite(s), which contributes to the effects on lipid metabolism. Methods: KK-Ay mice were used to validate the effects of MGF on lipid metabolic disorders. Liver biochemical indi...
متن کاملBiomechanism of chlorogenic acid complex mediated plasma free fatty acid metabolism in rat liver
BACKGROUND Plasma free fatty acids (FFA) are involved in blood lipid metabolism as well as many health complications. The present study was conducted to evaluate the potential role of chlorogenic acid complex from green coffee bean (CGA7) on FFA metabolism in high fat diet fed rats. METHODS Hyperlipidemia was induced in Wistar rats using high-fat diet. The animals were given CGA7/orlistat con...
متن کاملThe Effects of Simvastatin on Free Fatty Acids Profile in Fructose-fed Insulin Resistant Rats
Backgrounds: Type 2 diabetes mellitus is the most common metabolic disease and free fatty acids, as signaling molecules, can play a crucial role in the development of it. Different free fatty acids, through various cell membrane receptors, induce different effects on metabolic pathways and thereby affect insulin sensitivity. Simvastatin is a cholesterol decreasing drug prescrib...
متن کاملAMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development
Nonalcoholic fatty liver disease is a highly prevalent component of disorders associated with disrupted energy homeostasis. Although dysregulation of the energy sensor AMP-activated protein kinase (AMPK) is viewed as a pathogenic factor in the development of fatty liver its role has not been directly demonstrated. Unexpectedly, we show here that liver-specific AMPK KO mice display normal hepati...
متن کامل